Gcp Preemptible Instance Resource Calculation

關於資源評估 架構團隊提供虛擬機給應用,有個問題時常出現:應該分配多少資源給應用?例如:後端準備一個 API server,SRE 這邊要準備多少什麼規格的機器? 以往使用虛擬機直接部署應用時,會需要明確規劃各群虛擬機,各自需要執行的應用,如果沒有做資源的事前評估,有可能放上機器運行後就發生資源不足。 導入 Kubernetes 後,透過節點池 (Node Pool) 形成一個大型資源池,設定部署的政策後,讓 Kubernetes 自動調度應用: 每一個節點的資源夠大,使得應用虛擬機器上所佔的比例相對較小,也就是單一應用的調度不會影響節點的整體負載 如果節點太小,調度應用就會有些侷促,例如:一個 API server 均載時消耗 1 cpu 滿載時消耗 2 cpu。準備 3 cpu 的虛擬機,調度應用時幾乎是遷移整台虛擬機的負載 此外還有機會因為上篇提到的資源保留,造成調度失敗。如果準備 24 cpu 的機器,調度起來彈性就很大,對節點的性能衝擊也比較低 只需要估計整體的資源消耗率計算需求,配合自動擴展,動態器補足不足的資源 例如:估計總共需要 32 cpu ,準備 36 cpu 的虛擬機,當滿載時依據 cpu 壓力自動擴容到 48 cpu 希望整體資源的使用率夠高,當然預留太多的資源會造成浪費 要控管 Kubernetes 的資源使用量也可設定資源需求與資源限制,延伸閱讀。 估計得越準確,當然實際部署的資源掌握度就越高,然而筆者過去的經驗,團隊在交付源碼時未必就能夠做出有效的資源消耗評估,那有沒有什麼辦法可以幫助我們? 資源需求估估看 如果應用開發團隊,有先作應用的 profiling,然後 release candidate 版本有在 staging 上作壓力測試的話,維運團隊這邊應該就取得的數據,做部署前的資源評估。 應用在不同狀態或是工作階段,會消耗不同的資源 例如:運算密集的 batch job 可能會有 控制節點 (master node) 啟動後會佔有一定的資源,一般來說不會消耗太多,只是需要為控制節點優先保留資源 工作節點 (worker node) 啟動時會需要預留足夠的資源,接收工作後會逐漸增加資源使用,拉到滿載 例如:面向用戶的服務,可能會有 ...

September 25, 2020 · 1 min · 186 words · chechiachang

Gcp Preemptible Instance Requirement

需求規劃 使用先占節點比起使用一般隨選虛擬機,會多出許多技術困難需要克服,只有節省下的成本大於整體技術成本時,我們才會選用先占節點。因此這邊要進行成本精算,重新調整的架構下,實際到底能省多少錢。務必使用 Google Cloud Pricing Calculator 精算成本。 另外,雖然先占虛擬機會有很多額外的限制與技術困難,但實務上還是要對比實際的需求,有些限制與需求是衝突的,有些限制則完全不會影響我們的需求。前者當然會帶給我們較高的導入難度,後者可能會非常輕鬆。 這邊想給大家的概念是,務必先明確需求,再討論技術。這點很重要,技術的適用與否,不是由個人的喜好決定,唯一的判斷標準,是能不能有效率的滿足需求。 所以這邊先定義我們以下幾個需求: 執行短期的 batch job 執行長期的 user-facing API server 執行長期的 stateful 資料庫、儲存庫 Batch Job 常見的範例,例如 使用網路爬蟲 (crawler) 去抓取許多網站的所有內容 使用 GPU 進行機器學習的 Model Training 大數據計算 MapReduce 這些任務的核心需求,很簡單直接 盡快完成整體工作 盡可能節省大量算力成本 例如:我手上的機器學習 Model 粗略估計 10000 小時*GPU 的算力需求,才能產出一個有效的Model。由於大量的算力需求,一般來說都會選擇分散式的運算框架 (ex. MapReduce) ,將真正消耗算力的工作,使用分而化之 (divide and conquer) 的架構設計,將分配任務的控制節點 (master),與實際進行運算的工作節點(worker) 拆分。基於原本的分散式架構,幾乎可以無痛地將工作節點轉移到先占虛擬機上。 根據上述的需求,這類的工作特性可能有 CPU / GPU 算力需求高的運算節點 (Worker) Worker 本身是無狀態的 Stateless 可控的即時負載 將整體工作切分成任務單元 (task),分配給工作節點 任務單元的狀態外部保留,工作節點可容錯 (fault-tolerent),任務單元可復原 由於先占虛擬機可能是浮動價格,這類工作可以根據優先程度,調整合適的工作時間,例如在資料中心算力需求低,先占虛擬機的費用低廉時,啟用較多的工作節點加快運算,如果費用高時,可以降低先占虛擬機的使用,延後工作,甚至是調用不同區域,費用低的工作節點,來降低整體的成本。 執得注意的是,這類任務的控制節點 (master),也許是集中式的,也許是分散式的,需要根據性質考量,是否適合放在先占虛擬機上。有些架構控制節點可以容錯,然而錯誤發生後會需要復原狀態,這時會消耗額外的算力,可能會拖緩整體進度,造成算力的消耗。也許就可以考量使用隨選虛擬機配合使用。 User-facing services 常見的範例,例如 ...

September 24, 2020 · 1 min · 131 words · chechiachang

Gcp Preemptible Instance Speficication

先占虛擬機終止流程 (Preemption process) 子曰:未知生焉知死。但做工程師要反過來,考量最差情形,也就是要知道應用可能如何死去。不知道應用可能怎麼死,別說你知道應用活得好好的,大概想表達這麼意思。 這對先占虛擬機來說特別重要,一般應用面對的機器故障或是機器終止,在使用先占西你幾的狀況下,變成每日的必然,因此,需要對應用的終止情境,與終止流程有更精細的掌控。如同前幾篇所說的,先占虛擬機會被公有雲收回,但收回的時候不會突然機器就 ben 不見,會有一個固定的流程。 如果你的應用已經帶有可容錯的機制,能夠承受機器突然變不見,服務還好好的,仍然要花時間理解這邊的流程,藉此精算每天虛擬機的終止與替換:應用會有什麼反應,會產生多少衝擊,稍後可以量化服務的影響。例如 應用重啟初始化時 cpu memory 突然拉高 承受節點錯誤後的復原流程,需要消耗額外算力。例如需要從上個 checkpoint 接續做,需要去讀取資料造成 IO,或是資料需要做 rebalance …等等 如果你的應用需要有 graceful shutdown 的機制,那你務必要細心理解這邊的步驟。並仔細安排安全下樁的步驟。又或是無法保證在先占虛擬機回收的作業時限內,完成優雅終止,需要考慮其他可能的實作解法。 這邊有幾個面向要注意 GCP 如何終止先占節點 GCP 移除節點對 GKE 、以及執行中應用的影響 GKE 集群如何應對的節點失效 GCP 自動調度補足新的先占節點 GKE 集群如何應對節點補足 三個重點 先占虛擬機終止對集群的影響 Pod 隨之終止對應用的影響,是否能夠優雅終止 有沒有方法可以避免上面兩者的影響 劇透一下:有的,有一些招式可以處理。讓我們繼續看下去。 GCP 如何終止虛擬機 先占虛擬機的硬體終止步驟與一般隨選虛擬機相同,所以我們要先理解虛擬機的停止流程 這裡指的終止 (Stop) 是虛擬機生命週期 的 RUNNING -> instances.stop() -> STOPPING -> TERMINATED 的步驟。 instances.stop() ACPI shutdown OS 會進行 shutdown 流程,並嘗試執行各個服務的終止流程,以安全的終止服務。如果虛擬機有設定Shtudown Script 會在這步驟處理 等待至少 90 秒,讓 OS 完成終止的流程 逾時的終止流程,GCP 會直接強制終止,就算 shutdown script 還沒跑完 GCP 不保證終止時限的時間,官方建議不要寫重要的依賴腳本在終止時限內 虛擬機變成 TERMINATED 狀態 GCP 如何終止先占虛擬機 與隨選虛擬機不同 ...

September 23, 2020 · 2 min · 362 words · chechiachang

Gcp Preemptible Instance Requirement Distributed

我們以下幾個需求: 執行短期的 batch job 執行長期的 user-facing API server 執行長期的 stateful 資料庫、儲存庫 該不該在 Kubernetes 上面跑 database? TL;DR ,如果你剛開始考慮這件事,通常的答案都是否定的 等等,我們這邊不是討論該不該上 Kuberentes ,而是該不該使用先占虛擬機吧。然而由於先占虛擬機節點的諸多限制,光憑先占虛擬機並不適合跑任何持久性的儲存庫。我們這邊仰賴 Kubernetes 的網路功能 (e.g. 服務發現),與自動管理 (e.g. health check,HPA,auto-scaler),基於先占虛擬機,建構高可用性的服務架構,來支撐高可用,且有狀態的的儲存庫。 應用是否適合部署到 Kubernetes 上,可以看這篇 Google Blog: To run or not to run a database on Kubernetes: What to consider,如果大家有興趣,再留言告訴我,我再進行中文翻譯。 文中針對三個可能的方案做分析,以 MySQL 為例: Sass,GCP 的 Cloud SQL 最低的管理維運成本 自架 MySQL 在 GCP 的 VM 上,自行管理 自負完全的管理責任,包含可用性,備份 (backup),以及容錯移轉 (failover) 自架 MySQL 在 Kubernetes 上 自負完全的管理責任 Kubernetes 的複雜抽象層,會加重維運工作的複雜程度 然而 RDBMS 的提供商,自家也提供 Operator ...

September 22, 2020 · 1 min · 179 words · chechiachang

Gcp Preemptible Instance

前言 鐵人賽的第二部分,要帶來公有雲省錢系列文章。 架構的成本,很多時候會影響架構的設計與需求。公司的營運都需要在成本與需求之前平衡,成本其實是影響公司決策的重要因素。身為架構管理員,應該要試著量化並且進行成本管理,提出解決方案時,也需要思考如何幫公司開源節流。 一昧消減架構的成本也未必是最佳方案,帳面上消減的成本有時也會反映在其他地方,例如:使用比較便宜的解決方案,或是較低的算力,但卻造成維運需要花更多時間維護,造成隱性的人力成本消耗。用什麼替代方案 (trade-off) 省了這些錢。 Kubernetes 是一個很好的例子:例如:有人說「Kubernetes 可以省錢」,但也有人說「Kubernetes 產生的 Overhead 太重會虧錢」。 「要不要導入 Kubernetes 是一個好問題」。應該回歸基本的需求,了解需求是什麼。例如:Google 當初開發容器管理平台,是面對什麼樣的使用需求,最終開發出 Kubernetes,各位可以回顧前篇文章「Borg Omega and Kubernete,Kubernetes 的前日今生,與 Google 十餘年的容器化技術」,從 Google 的角度理解容器管理平台,反思自身團隊的實際需求。 這套解決方案是否真的適合團隊,解決方案帶來的效果到底是怎樣呢?希望看完這系列文章後,能幫助各位,從成本面思考這些重要的問題。 這篇使用 GCP 的原因,除了是我最熟悉的公有雲外,也是因為 GCP 提供的免費額度,讓我可以很輕鬆地作為社群文章的 Demo,如果有別家雲平台有提供相同方案,請留言告訴我,我可能就會多開幾家不同的範例。 先占虛擬機 TL;DR 先占虛擬機為隨選虛擬機定價的 2-3 折,使用先占虛擬機可能可以節省 7 成的雲平台支出 先占虛擬機比起隨選虛擬機,外加有諸多限制,e.g. 最長壽命 24 hr、雲平台會主動終止先占虛擬機…等 配合使用自動水平擴展 (auto-scaler),讓舊的先占虛擬機回收的同時,去購買新的先占虛擬機 配合可容錯 (fault-tolerent) 的分散式應用,讓應用可以無痛在虛擬機切換轉移,不影響服務 要讓應用可以容錯,需要做非常多事情 搭配 kubernetes ,自動化管理來簡化工作 配合正確的設定,可以穩定的執行有狀態的分散式資料庫或儲存庫 或是看 Google 官方 Blog:Cutting costs with Google Kubernetes Engine: using the cluster autoscaler and Preemptible VMs 預計內容 ...

September 21, 2020 · 1 min · 94 words · chechiachang