git clone https://github.com/chechiachang/rag-workshop.git
cd rag-workshop
docker compose up -d
docker exec -it notebook pip install pandas openai qdrant_client tqdm tenacity wget tenacity unstructured markdown ragas sacrebleu langchain_qdrant langchain-openai langchain_openai langchain_community tiktoken ipywidgets
登入token="workshop1234!"
可以先看,也可以當天再看
notebook token: workshop1234!
AZURE_OPENAI_API_KEY=""
AZURE_OPENAI_ENDPOINT=""
cd rag-workshop
NGROK_AUTHTOKEN=<改成你的token>
sed -i "s/your-token/$NGROK_AUTHTOKEN/" docker-compose.yaml
docker compose up -d
docker logs ngrok
t=2025-06-02T06:17:41+0000 lvl=info msg="started tunnel" obj=tunnels name=command_line addr=http://notebook:8888 url=https://4d11-52-230-24-207.ngrok-free.app
https://cookbook.openai.com/images/llamaindex_rag_overview.png
在快速變動、資訊分散的環境中,難以即時取得需要的知識。「有但找不到、看不懂、用不起來」
DevOps AI Copilot 不應該像圖書館守門員等人來借書, 而應該像導航系統,在你開車時主動告訴你:前方有彎道。
RAG + Context-Aware Knowledge Copilot